Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Total Environ ; 924: 171645, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479523

RESUMEN

The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Guyana Francesa/epidemiología , SARS-CoV-2/genética , Aguas Residuales , COVID-19/epidemiología , América del Sur
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762030

RESUMEN

The identification of an emerging pathogen in humans can remain difficult by conventional methods such as enrichment culture assays that remain highly selective, require appropriate medium and cannot avoid misidentifications, or serological tests that use surrogate antigens and are often hampered by the level of detectable antibodies. Although not originally designed for this purpose, the implementation of polymerase-chain-reaction (PCR) has resulted in an increasing number of diagnostic tests for many diseases. However, the design of specific molecular assays relies on the availability and reliability of published genetic sequences for the target pathogens as well as enough knowledge on the genetic diversity of species and/or variants giving rise to the same disease symptoms. Usually designed for clinical isolates, molecular tests are often not suitable for environmental samples in which the target DNA is mixed with a mixture of environmental DNA. A key challenge of such molecular assays is thus to ensure high specificity of the target genetic markers when focusing on clinical and environmental samples in order to follow the dynamics of disease transmission and emergence in humans. Here we focus on the Buruli ulcer (BU), a human necrotizing skin disease mainly affecting tropical and subtropical areas, commonly admitted to be caused by Mycobacterium ulcerans worldwide although other mycolactone-producing mycobacteria and even mycobacterium species were found associated with BU or BU-like cases. By revisiting the literature, we show that many studies have used non-specific molecular markers (IS2404, IS2606, KR-B) to identify M. ulcerans from clinical and environmental samples and propose that all mycolactone-producing mycobacteria should be definitively considered as variants from the same group rather than different species. Importantly, we provide evidence that the diversity of mycolactone-producing mycobacteria variants as well as mycobacterium species potentially involved in BU or BU-like skin ulcerations might have been underestimated. We also suggest that the specific variants/species involved in each BU or BU-like case should be carefully identified during the diagnosis phase, either via the key to genetic identification proposed here or by broader metabarcoding approaches, in order to guide the medical community in the choice for the most appropriate antibiotic therapy.

3.
J Fungi (Basel) ; 9(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37108882

RESUMEN

The emergence of pathogenic fungi is a major and rapidly growing problem (7% increase) that affects human and animal health, ecosystems, food security, and the economy worldwide. The Dermocystida group in particular has emerged relatively recently and includes species that affect both humans and animals. Within this group, one species in particular, Sphareothecum destruens, also known as the rosette agent, represents a major risk to global aquatic biodiversity and aquaculture, and has caused severe declines in wild fish populations in Europe and large losses in salmon farms in the USA. It is a species that has been associated with a healthy carrier for millions of years, but in recent decades, the host has managed to invade parts of Southeast Asia, Central Asia, Europe, and North Africa. In order to better understand the emergence of this new disease, for the first time, we have synthesized current knowledge on the distribution, detection, and prevalence of S. destruens, as well as the associated mortality curves, and the potential economic impact in countries where the healthy carrier has been introduced. Finally, we propose solutions and perspectives to manage and mitigate the emergence of this fungus in countries where it has been introduced.

4.
Microorganisms ; 11(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110472

RESUMEN

With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47-8.33% in OsHV-1 infected oysters, 2.55-6.98% in carps infected with CyHV-3 and 2.18-5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security.

6.
Trop Med Infect Dis ; 7(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878136

RESUMEN

BACKGROUND: Zoonotic diseases account for more than 70% of emerging infectious diseases (EIDs). Due to their increasing incidence and impact on global health and the economy, the emergence of zoonoses is a major public health challenge. Here, we use a biogeographic approach to predict future hotspots and determine the factors influencing disease emergence. We have focused on the following three viral disease groups of concern: Filoviridae, Coronaviridae, and Henipaviruses. METHODS: We modelled presence-absence data in spatially explicit binomial and zero-inflation binomial logistic regressions with and without autoregression. Presence data were extracted from published studies for the three EID groups. Various environmental and demographical rasters were used to explain the distribution of the EIDs. True Skill Statistic and deviance parameters were used to compare the accuracy of the different models. RESULTS: For each group of viruses, we were able to identify and map areas at high risk of disease emergence based on the spatial distribution of the disease reservoirs and hosts of the three viral groups. Common influencing factors of disease emergence were climatic covariates (minimum temperature and rainfall) and human-induced land modifications. CONCLUSIONS: Using topographical, climatic, and previous disease outbreak reports, we can identify and predict future high-risk areas for disease emergence and their specific underlying human and environmental drivers. We suggest that such a predictive approach to EIDs should be carefully considered in the development of active surveillance systems for pathogen emergence and epidemics at local and global scales.

7.
Bioinformatics ; 38(7): 2033-2035, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080622

RESUMEN

MOTIVATION: Amplicon-based nanopore sequencing is increasingly used for molecular surveillance during epidemics (e.g. ZIKA, EBOLA) or pandemics (e.g. SARS-CoV-2). However, there is still a lack of versatile and easy-to-use tools that allow users with minimal bioinformatics skills to perform the main steps of downstream analysis, from quality testing to SNPs effect to phylogenetic analysis. RESULTS: Here, we present ONTdeCIPHER, an amplicon-based Oxford Nanopore Technology sequencing pipeline to analyze the genetic diversity of SARS-CoV-2 and other pathogens. Our pipeline integrates 13 bioinformatics tools. With a single command line and a simple configuration file, users can pre-process their data and obtain the sequencing statistics, reconstruct the consensus genome, identify variants and their effects for each viral isolate, infer lineage and, finally perform multi-sequence alignments and phylogenetic analyses. AVAILABILITY AND IMPLEMENTATION: ONTdeCIPHER is available at https://github.com/emiracherif/ONTdeCIPHER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2/genética , Programas Informáticos , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
8.
One Health ; 13: 100307, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34430698

RESUMEN

Cutaneous Leishmaniasis (CL) is the most prevalent form of Leishmaniasis and is widely endemic in the Americas. Several species of Leishmania are responsible for CL, a severely neglected tropical disease and the treatment of CL vary according to the different species of Leishmania. We proposed to map the distribution of the Leishmania species reported in French Guiana (FG) using a biogeographic approach based on environmental predictors. We also measured species endemism i.e., the uniqueness of species to a defined geographic location. Our results show that the distribution patterns varied between Leishmania spp. and were spatially dependent on climatic covariates. The species distribution modelling of the eco-epidemiological spatial patterns of Leishmania spp. is the first to measure endemism based on bioclimatic factors in FG. The study also emphasizes the impact of tree cover loss and climate on the increasing distribution of L. (Viannia) braziliensis in the most anthropized regions. Detection of high-risk regions for the different between Leishmania spp. is essential for monitoring and active surveillance of the vector. As climate plays a major role in the spatial distribution of the vector and reservoir and the survival of the pathogen, climatic covariates should be included in the analysis and mapping of vector-borne diseases. This study underscores the significance of local land management and the urgency of considering the impact of climate change in the development of vector-borne disease management strategies at the global scale.

9.
Ecol Evol ; 10(16): 8623-8633, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884645

RESUMEN

Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness-related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density-dependent effects linked to resource availability or to local biotic resistance.

10.
Int J Health Geogr ; 18(1): 23, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694656

RESUMEN

BACKGROUND: With the increase in unprecedented and unpredictable disease outbreaks due to human-driven environmental changes in recent years, we need new analytical tools to map and predict the spatial distribution of emerging infectious diseases and identify the biogeographic drivers underpinning their emergence. The aim of the study was to identify and compare the local and global biogeographic predictors such as landscape and climate that determine the spatial structure of leptospirosis and Buruli Ulcer (BU). METHODS: We obtained 232 hospital-confirmed leptospirosis (2007-2017) cases and 236 BU cases (1969-2017) in French Guiana. We performed non-spatial and spatial Bayesian regression modeling with landscape and climate predictor variables to characterize the spatial structure and the environmental drivers influencing the distribution of the two diseases. RESULTS: Our results show that the distribution of both diseases is spatially dependent on environmental predictors such as elevation, topological wetness index, proximity to cropland and increasing minimum temperature at the month of potential infection. However, the spatial structure of the two diseases caused by bacterial pathogens occupying similar aquatic niche was different. Leptospirosis was widely distributed across the territory while BU was restricted to the coastal riverbeds. CONCLUSIONS: Our study shows that a biogeographic approach is an effective tool to identify, compare and predict the geographic distribution of emerging diseases at an ecological scale which are spatially dependent to environmental factors such as topography, land cover and climate.


Asunto(s)
Úlcera de Buruli/epidemiología , Cambio Climático , Enfermedades Transmisibles Emergentes/epidemiología , Hidrobiología/métodos , Leptospirosis/epidemiología , Teorema de Bayes , Úlcera de Buruli/diagnóstico , Enfermedades Transmisibles Emergentes/diagnóstico , Guyana Francesa/epidemiología , Humanos , Hidrobiología/tendencias , Leptospira/aislamiento & purificación , Leptospirosis/diagnóstico , Mycobacterium ulcerans/aislamiento & purificación
12.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320424

RESUMEN

Combined Nanopore and Illumina whole-genome sequencing of a French Guianan Mycobacterium ulcerans (Buruli ulcer agent) clinical isolate yielded a 5.12-Mbp genome with a 65.5% GC content, 5,215 protein-coding genes, and 51 predicted RNA genes. This publicly available M. ulcerans whole-genome sequence from a strain isolated in South America is closely related to M. ulcerans subsp. liflandii.

13.
PLoS Negl Trop Dis ; 13(1): e0007074, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615683

RESUMEN

BACKGROUND: Zoonotic pathogens respond to changes in host range and/or pathogen, vector and host ecology. Environmental changes (biodiversity, habitat changes, variability in climate), even at a local level, lead to variability in environmental pathogen dynamics and can facilitate their transmission from natural reservoirs to new susceptible hosts. Whilst the environmental dynamics of aquatic bacteria are directly linked to seasonal changes of their habitat they also rely on the ecological processes underpining their transmission. However data allowing the comparison of these ecological processes are lacking. Here we compared the environmental dynamics of generalist and vector-borne aquatic bacterial pathogens in the same unit of time and space, and across rural and urban habitats in French Guiana (South America). PRINCIPAL FINDINGS: Using Leptospira sp. and Mycobacterium ulcerans we performed an environmental survey that allowed the detection of both pathogens in urban vs. rural areas, and during rainy vs. dry weather conditions. All samples were subjected to qPCR amplifications of LipL32 (Leptospira sp.) and IS2404 and KR (M. ulcerans) genetic markers. We found (i) a greater presence of M. ulcerans in rural areas compared with Leptospira sp., (ii) that modified urban environments were more favourable to the establishment of both pathogens, (iii) that Leptospira sp. presence was enhanced during the rainy season and M. ulcerans during the dry period, and (iv) differences in the spatial distribution of both bacteria across urban sites, probably due to the mode of dissemination of each pathogen in the environment. CONCLUSIONS: We propose that in French Guiana simplified and modified urban ecosystems might favour leptospirosis and Buruli ulcer emergence and transmission. Moreover, disease risk was also constrained by seasonality. We suggest that the prevention of aquatic bacterial disease emergence in impoverished urban areas of developing countries would benefit from seasonal diseases targeted surveys, which would maximise limited budgets from cash-strapped health agencies.


Asunto(s)
Microbiología Ambiental , Leptospira/aislamiento & purificación , Mycobacterium ulcerans/aislamiento & purificación , Guyana Francesa , Humanos , Población Rural , Estaciones del Año , Análisis Espacio-Temporal , Población Urbana
14.
Transbound Emerg Dis ; 65(6): 1474-1481, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30144307

RESUMEN

International biodiversity assessments often overlook the role of emerging infectious pathogens in the decline of freshwater fish populations despite the many examples of emerging diseases in other more visible taxa on a global scale. Whilst the introduction of the rosette agent Sphaerothecum destruens in Europe remained an epidemiological enigma, recent findings have shown that this parasite arrived in Europe with the introduction of the healthy carrier Pseudorasbora parva from China nearly 60 years ago and its emergence went unnoticed for over 45 years despite its severe impact on European fish biodiversity. Recent reports on the host and pathogen phylogeny point towards an ancient host-pathogen co-evolution with direct implications on disease risk. Here, we postulate that the observed rapid population decline of native fish species following their infection with virulent strains of S. destruens has underpinned the rapid establishment of P. parva populations during the invasion process. We reviewed the existing evidence supporting the claim of an S. destruens' emergence worldwide and also suggest that the origin of the US strains is to be found among contaminated Asian Oncorhynchus tshawytscha living in sympatry with native Asian P. parva population. Finally, several important preventative steps are suggested as a way to manage the impact of S. destruens on local fish communities.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Cyprinidae/parasitología , Enfermedades de los Peces/epidemiología , Infecciones por Mesomycetozoea/epidemiología , Mesomycetozoea , Animales , China/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/parasitología , Europa (Continente)/epidemiología , Enfermedades de los Peces/parasitología , Agua Dulce , Infecciones por Mesomycetozoea/parasitología , Filogenia , Salmón/parasitología
16.
Emerg Microbes Infect ; 6(4): e21, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28442755

RESUMEN

Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.


Asunto(s)
Animales Salvajes/microbiología , Úlcera de Buruli/microbiología , Úlcera de Buruli/transmisión , Enfermedades Transmisibles Emergentes/transmisión , Reservorios de Enfermedades/microbiología , Mycobacterium ulcerans/patogenicidad , Agricultura/métodos , Animales , Biodiversidad , Enfermedades Transmisibles Emergentes/microbiología , Conservación de los Recursos Naturales/métodos , ADN Bacteriano/análisis , Ecosistema , Humanos , Clima Tropical
17.
Parasitology ; 143(9): 1204-10, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216376

RESUMEN

The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.


Asunto(s)
Cyprinidae/parasitología , Enfermedades de los Peces/parasitología , Infecciones por Mesomycetozoea/epidemiología , Mesomycetozoea , Animales , Reservorios de Enfermedades , Inglaterra/epidemiología , Europa (Continente)/epidemiología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/prevención & control , Especificidad del Huésped , Especies Introducidas , Infecciones por Mesomycetozoea/parasitología , Infecciones por Mesomycetozoea/prevención & control , Prevalencia , Medición de Riesgo , Factores de Riesgo , Gales/epidemiología
18.
Emerg Microbes Infect ; 4: e52, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26954992

RESUMEN

Recent years have seen a global and rapid resurgence of fungal diseases with direct impact on biodiversity and local extinctions of amphibian, coral, or bat populations. Despite similar evidence of population extinction in European fish populations and the associated risk of food aquaculture due to the emerging rosette agent Sphaerothecum destruens, an emerging infectious eukaryotic intracellular pathogen on the fungal-animal boundary, our understanding of current threats remained limited. Long-term monitoring of population decline for the 8-year post-introduction of the fungal pathogen was coupled with seasonal molecular analyses of the 18S rDNA and histological work of native fish species organs. A phylogenetic relationship between the existing EU and US strains using the ribosomal internal transcribed spacer sequences was also carried out. Here, we provide evidence that this emerging parasite has now been introduced via Pseudorasbora parva to sea bass farms, an industry that represents over 400 M€€ annually in a Mediterranean region that is already economically vulnerable. We also provide for the first time evidence linking S. destruens to disease and severe declines in International Union for Conservation of Nature threatened European endemic freshwater fishes (i.e. 80% to 90 % mortalities). Our findings are thus of major economic and conservation importance.


Asunto(s)
Lubina/parasitología , Cyprinidae/parasitología , Enfermedades de los Peces/epidemiología , Mesomycetozoea/aislamiento & purificación , Animales , Acuicultura , Secuencia de Bases , Biodiversidad , Europa (Continente)/epidemiología , Enfermedades de los Peces/economía , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/patología , Especies Introducidas , Mesomycetozoea/genética , Datos de Secuencia Molecular , Filogenia , Prevalencia , Estaciones del Año , Análisis de Secuencia de ADN
19.
Ecology ; 94(11): 2558-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24400507

RESUMEN

Ecological theory on biological invasions attempts to characterize the predictors of invasion success and the relative importance of the different drivers of population establishment. An outstanding question is how propagule pressure determines the probability of population establishment, where propagule pressure is the number of individuals of a species introduced into a specific location (propagule size) and their frequency of introduction (propagule number). Here, we used large-scale replicated mesocosm ponds over three reproductive seasons to identify how propagule size and number predict the probability of establishment of one of world's most invasive fish, Pseudorasbora parva, as well as its effect on the somatic growth of individuals during establishment. We demonstrated that, although a threshold of 11 introduced pairs of fish (a pair is 1 male, 1 female) was required for establishment probability to exceed 95%, establishment also occurred at low propagule size (1-5 pairs). Although single introduction events were as effective as multiple events at enabling establishment, the propagule sizes used in the multiple introductions were above the detected threshold for establishment. After three reproductive seasons, population abundance was also a function of propagule size, with rapid increases in abundance only apparent when propagule size exceeded 25 pairs. This was initially assisted by adapted biological traits, including rapid individual somatic growth that helped to overcome demographic bottlenecks.


Asunto(s)
Peces/fisiología , Especies Introducidas , Animales , Femenino , Masculino , Modelos Biológicos , Densidad de Población , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...